quarta-feira, 26 de setembro de 2018

Trans-intermecânica categorial Graceli transcendent and indeterminate, for:

Effects 11,425.

Light [photons] = thermo-electromagnetic radiation / quantum index Categories of Graceli. [cG].

F = R [TEM] / h [cG].




Trans-intermecânica categorial Graceli transcendente e indeterminada, para:

Efeitos 11.425.

Luz [fótons] = radiação termo-eletromagnética / índice quântico categorias de Graceli. [cG].

F= R [TEM] / h [cG].

efeito 11.425.
a ordem da desordem de Graceli, conceito de entropia categorial indeterminado de Graceli.

cada tipo de estrutura tem o seu tipo, nível e potencial de desordem, e que variam também conforme energias e fenõmenos envolvidos.
função de entropia indeterminista categorial Graceli.

  d[hc][T/IEEpei [pit]=[pTEMRLD]cG].







d[hc][T/IEEpei [pit]=[pTEMRLD] e[fao][ itd][iicee]tetdvd [pe] cee [caG].]

p it = potenciais de interações e transformações.
Temperatura dividido por isótopos e estados físicos e estados potenciais de energias e isotopos = emissões, fluxos aleatórios de ondas, interações de íons, cargas e energias estruturas, tunelamentos e emaranhamentos, transformações e decaimentos, vibrações e dilatações, potencial eletrostático, condutividades, entropias e entalpias. categorias e agentes de Graceli.

h e = índice quântico e velocidade da luz.

[pTEMRlD] = POTENCIAL TÉRMICO, ELÉTRICO, MAGNÉTICO, RADIOATIVO, luminescência, DINÂMICO]..


EPG = ESTADO POTENCIAL GRACELI.



distribuição indeterminsita categorial de Graceli.

d[hc][T/IEEpei [pit]=[pTEMRLD] e[fao][ itd][iicee]tetdvd [pe] cee [caG].]


d[hc][T/IEEpei [pit]=[pTEMRLD]cG]


d[hc][T/IEEpei [pit]=[pTEMRLD]cG]


d[hc][T/IEEpei [pit]=[pTEMRLD]cG]

d[hc][T/IEEpei [pit]=[pTEMRLD]cG]


 d[hc][T/IEEpei [pit]=[pTEMRLD]cG]


 d[hc][T/IEEpei [pit]=[pTEMRLD]cG]




p it = potenciais de interações e transformações.
Temperatura dividido por isótopos e estados físicos e estados potenciais de energias e isotopos = emissões, fluxos aleatórios de ondas, interações de íons, cargas e energias estruturas, tunelamentos e emaranhamentos, transformações e decaimentos, vibrações e dilatações, potencial eletrostático, condutividades, entropias e entalpias. categorias e agentes de Graceli.

h e = índice quântico e velocidade da luz.

[pTEMRlD] = POTENCIAL TÉRMICO, ELÉTRICO, MAGNÉTICO, RADIOATIVO, luminescência, DINÂMICO]..


EPG = ESTADO POTENCIAL GRACELI.



Em física a Distribuição de Boltzmann permite calcular a função distribuição para um número fracionário de partículas Ni / N ocupando um conjunto de estados i cada um dos quais tem energia Ei:
onde  é a constante de BoltzmannT é a temperatura (admitida como sendo uma quantidade precisamente bem definida),  é a degeneração, ou número de estados tendo energia N é o total do número de partículas:
Z(T) é chamada função partição, a qual pode ser tratada como sendo igual a
Alternativamente, para um sistema único em uma temperatura bem definida, ela dá a probabilidade deste sistema em seu estado específico. A distribuição de Boltzmann aplica-se somente à partículas em uma suficiente alta temperatura e baixa densidade nas quais efeitos quânticos possam ser ignorados, e cujas partículas obedeçam a estatística de Maxwell–Boltzmann. (Veja este artigo para uma derivação da distribuição de Boltzmann.)
A distribuição de Boltzmann é frequentemente expressa em termos de β = 1/kT aonde β refere-se ao beta termodinâmico. O termo  ou , o qual dá a relativa probabilidade (não normalizada) de um estado, é chamada factor de Boltzmann e aparece frequentemente no estudo da física e química.
Quando a energia é simplesmente a energia cinética da partícula
então a distribuição corretamente dá a distribuição de Maxwell-Boltzmann das velocidades das moléculas do gás, previamente previstas por Maxwell em 1859. A distribuição de Boltzmann é, entretanto, muito mais geral. Por exemplo, ela prediz a variação da densidade de partículas num campo gravitacional em relação à altitude, se . De fato a distribuição aplica-se sempre que as considerações quânticas possam ser ignoradas.
Em alguns casos, uma aproximação contínua pode ser usada. Se há g(EdE estados com energia E a E + dE, quando a distribuição de Boltzmann prediz uma probabilidade de distribuição para a energia:
Quando g(E) é chamado densidade de estado se o espectro de energia é contínuo.
Partículas clássicas com esta distribuição de energia são ditas obedientes à estatística de Maxwell–Boltzmann.
No limite clássico, i.e. em grandes volumes de E/kT ou às menores densidades de estados — quando funções de onda de partículas praticamente não se sobrepõe, tanto a distribuição Bose–Einstein ou a Fermi–Dirac tornam-se a distribuição de Boltzmann.